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We extend the trajectory scaling function as defined for maps to flows whose 
dynamics is governed by ordinary differential equations. The results are 
obtained for the Duffing oscillator and are expected to be the same for other 
dissipative flows as well. 
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1. I N T R O D U C T I O N  

The universality of several routes to chaos has been characterized by 
invariants, among them scaling indices, (1"2) dimensions (3'4) [generalized 
dimensions, ricO], and trajectory scaling functions (TSFs). (5'61 They are 
universal for a large class of processes and help determine the universality 
class to which a given system belongs. The scaling indices determine the 
local behavior near at most a few points on the attractor, and contain no 
global information. The spectrum of singularities contains global informa- 
tion about  the averaged orbit, but no local positional and dynamical infor- 
mation. The TSF, on the other hand, contains all local scaling information 
and also describes the global structure, so that it yields the most informa- 
tion about experimental transitions to "chaos. It is also very sensitive to the 
exact renormalization group, and hence can be used to determine the 
universality class to which a given system belongs. 

The TSF is a ratio of small distances in a neighborhood measured in 
time. By virtue of its definition it remain unchanged under smooth coor- 
dinates changes (which locally is a combination of translation, rotation, 
and stretching, and hence does not affect the ratio between local distances). 
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For example, for maps it is known that the TSF for period doubling bifur- 
cations is a collection of step functions changing its value when the orbit 
comes close to a singular point. By studying the orbit, and in particular the 
close returns to the (generally unique) critical point, the form of the TSF 
can be determined perturbatively. Using a new approach, we shall study in 
this paper how the TSF can be calculated for period doubling bifurcations 
in dynamical systems described by a set of ordinary differential equations 
and show how the results for maps can be extended to flows. 

We consider the Duffing oscillator 

+ a2 + b x  + c x  3 = ~ cos(~ot) (1) 

which is a driven dissipative anharmonic oscillator whose parameter space 
has been studied in detail. We shall keep a, b, c, and w fixed and use 7 as 
our control parameter, which leads to period doubling bifurcations. The 
period of the orbits in the cascade of bifurcations is given by 2" 
(n = 0, 1, 2,...) times the period of the driving force 7 cos(e)t), which is 2g/~o. 
The values of 7 where the new orbits are born converge geometrically with 
the Feigenbaum ratio 6 = 4.6692.., since we are considering a dissipative 
system (a > 0). 

The aim of the present paper is to study the scaling structure present 
in a complete periodic orbit of a bifurcation sequence in the Duffing equa- 
tion. Just as for maps, the most complete way to characterize this structure 
is through the trajectory scaling function. We observe that the TSF 
calculated for orbits with the same stability converges for n large enough. 
Since the period doubling phenomenon is associated with a universal 
theory, the TSF will be the same for a large class of continuous dynamical 
systems. 

The paper is organized as follows: In the next section we review 
the definition and basic features of the TSF in maps and introduce an 
equivalent definition to be applied in flows. The numerical results are 
shown in the third section and the last gives the conclusions. The Appendix 
describes the method used to calculate the stability of a periodic orbit in 
flows. 

2. T H E  T R A J E C T O R Y  S C A L I N G  F U N C T I O N  

Let us first review, from refs. 5 and 6, the basic features of the TSF for 
period doubling bifurcations in a one-dimensional map Xi+l = f ( x i ) ,  where 
f is a single-hump nonlinear function. 

Consider the periodic orbit {X(o n), x~'~,..., x~ )- 1 } at the nth level of the 
bifurcation tree ( N =  2n). Beyond the bifurcation every point, xl n) splits 
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into two points xl n+l) and ~"+*) in such a way that the orbit does not Xi+N 
close into itself after 2 n time steps, but returns exactly after 2 (n + ~). For each 
orbit there is one value of the control parameter for which the orbit 
includes the critical point (peak) of the map. At this value of the parameter 
the derivative of the map vanishes and the cycle is called superstable. By 
convention, the point x o is chosen to be the critical point at the superstable 
orbit. The quantity 

-~n~ (2) ~I ~ =xl~-~,+2n_~ 

depends on the stability of the orbit and represents a measure of the bifur- 
cation. The TSF relates the scaling between two superstable orbits and is 
defined by 

~( i /N)=AI" I /AI  "+l) ( 0 < i < N )  (3) 

This function converges for n large enough (n ~ 7). The smoothness of the 
transformation f means that the local scalings do not change much as the 
map is iterated, except at certain special points, where there is a jump in 
or. At these points the orbit passes close to the maximum of the map. The 
jumps are completely determined by the dominant exponent of the dynami- 
cal variable in f .  Consequently, the TSF is a universal function which 
depends only on the maximum of the map. 

When the map f is a diffeomorphism, ~( ( i+  1)/N) and o(i /N)  are 
identical to the lowest order, since 

~ i + 1  ~i+l+N/2 
O" - -  ~---- v . ( n + l  ) ~ . ( n +  i )  

f (xf~))  ~) ____ - - f ( x i+x /2 )  
f ( x l "  + ')) - rt,.(" + 1~ (4) 

which after a first-order Taylor expansion of f ( x )  about x gives 

a \ N ] \ N /  (5) 

Therefore, we see that the TSF is invariant under smooth coordinate 
changes and consequently ~(i /N) can be extended to a continuous function 
o(u), where u e [0, 1]. Further, o(u + 1/2)= --o(u). 

In a crude approximation the TSF for the quadratic map is given by (61 

{~ 2 0 < u < 1/4 
a(u) ,~ (6) 

:r 1/4 < u < 1/2 
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where e =  2.5029... is the rescaling factor of the period doubling tenor- 
realization group. 

Now let us extend the definition of the TSF for a continuous-time 
dynamical system. The Duffing equation can be rewritten as 

.9 = - a y  - bx  - cx 3 + 7 cos 0 (7) 

O = co 

The solution of this equation for most regions of the parameter space 
can be found only through numerical integration. A cascade of bifurcations 
can be visualized in the projections into the x y plane. In this plane a 
periodic orbit at the nth level of the cascade closes after a time Tn = 2nT0, 
where To=2Tc/co. Denote this orbit by O ~n)= {x<~)(t)lO<<.t<Tn}, where 
x(t) = (x(t), y( t ) ) .  Beyond the next bifurcation, the orbit fails to close after 
a time T n but does so after Tn+~=2Tn.  The orbit O (n) splits into two 
pieces, O ] n + l l = { x ( " + l ) ( t ) l O < ~ t < T n }  and O~O+l )={x (~+i~ ( t+  T~)l 

0 ~< t < T. }, which almost follow each other. The distance between the two 
halves n <~+ 1) and n(~+ 1) of the 2 (n+ 1)-cycle is a measure of the bifurcation ~ 1  ~ 2  

and we study its scaling properties. The calculation of the TSF relating the 
scaling between two orbits with the same stability (as described above for 
maps) represents a hard numerical task. The points x ( n ) ( t + k T o )  and 
x ("+ ~)(t+ 2kTo) ( k =  0, 1,...) will in general not lie on the same Poincar~ 
section Pt (parametrized by t). Hence, as the time advances, the crossings 
of the orbits O (') and O (" + ~) with the same P, would have to be evaluated. 

For  the Duffing oscillator the periodicity of the driving force implies 
that the points {x("+~)(t), x(n+~)(t+ To),..., x("+~)(t + T,)} lie on the same 
Poincar6 section. In this way, we can easily calculate the distances d~ 
between n(~+~ and n("+~) on successive Pt's as time advances. Instead of ~ 1  ~ 2  

calculating the analogue of (2), we resort to evaluating the TSF between 
successive branches of a single orbit, i.e., we determine how the nearest 
distances of O (') are related to the next nearest distances. Thus, define 

0;(, ) x,~ + ro_2/t 
�9 ~ - I x ~ " ~ ( t ) - x l " ~ ( t +  r,~ 1)/ 

( 0 < t <  T,,) (8) 

where the index f in a j- refers to flow. All points involved in the above 
equation lie on Pt, and hence aj- is easily determined. Note that had the 
force not been periodic, we would not have such a simple definition of o?, 
and hence we would have to solve the intersection of O (n) and O (n+ 1) with 
a series of Poincar6 sections. We believe, however, that the results obtained 
here will generalize to such cases. 
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Different Poincar~ sections of an orbit are related by smooth con- 
jugacies in general and hence in these cases a(t) will not change for small 
increases within a passage, by arguments similar to those given earlier. 

We will show in Section 3 that the TSF obtained through Eq. (3) 
is very similar to the TSF of the quadratic map, which is a representation 
for Poincar6 maps of the Duffing equation. However, the two-level 
TSF as calculated in ref. 6 shows remarkable differences between 
the curves obtained for maps and flows. We believe that the only reason 
for this is that the two distances IX(n)(t)--X(n)(t+ Tn 1)1 and 
Ix(n+l)(t)--x(n+~)(t+T~)] are measured on different Poincar6 sections, 
and this would explain the presence of many cusps on the curve of the TSF 
for flows. The scheme we used for a single orbit defines these distances on 
the same Poincar6 section and this is why it is closer to the theoretical 
TSF. 

Let us first see the TSF for one cycle in one-dimensional maps. 
Consider the n-fold orbit of the map. Then the TSF will be given by (ref. 6) 

o' _ x l  n/ ~-,+ x/4 ( 0 < i < N )  (9) 
X l n )  _ y ( n )  

J~ i + N/2  

For n large enough (n ~ 7) this function converges when the orbits have the 
same stability. Using a similar argument as the one for o, we can show that 
a' is invariant under smooth coordinate changes; consequently, we can 
extend it to continuous variables by defining a new function in such way 
that a'(i/N)--, a'(u). By Eq. (9) we see that it is possible to construct the 
complete orbit if a' and the N/2 points are known. In this sense the TSF 
reconstruct the attractor. In order to compare with the results obtained for 
flows, we show Icr't in Fig. la for the quadratic map f ( x ) =  1 - a x  2 at the 
21~ cycle. Observe that at every rational u = j / 2  ~, for j odd, 
there is a jump in Io'1, which decreases rapidly with increasing k. The size 
of the discontinuities depends on the stability of the orbit. For  the super- 
stable cycle the averaged value of r~r'l for each quartile is given by 

9.85, 

~3.69, 

la'(u)l }6.44, 

t,3.11, 

0 <  u <  1/4 

1/4 < u < 1/2 

1/2 < u < 3/4 

3 / 4 < u <  1 

(10) 

The ratio of the first and second quartiles of ]a'(u)t is approximately 2.67. 
This number represents a estimate for the rescaling factor a. 

The main advantage of this method lies in the inability to evaluate the 
two-level TSF from experimental data, since the stability of an experimen- 
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Fig.  1. 
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tal orbit cannot be predetermined, and hence it is not possible to get 
different orbits of identical stability. In fact, the TSF has only been 
determined recently for an experimental system, (7~ and it was the single- 
level TSF as defined in Eq. (9). 

Using one cycle, it is also possible to calculate in a reasonable 
approximation the TSF as defined by Eq. (3). Consider the n-fold orbit 
(n large) and the following definition with m ~ n: 

(2n~+ 1 ) (n) _ v(n) a "  - -  x i  "w+2m ( 0 < i < 2  m) (11) v(n) ~(n) 
.a, i - - ~ , . i + 2  m 1 

Then, it is numerically observed that ~r" is a reasonable approximation for 
a. In Fig. lb we show the TSF for the quadratic map using the above 
definition. We know that in a crude approximation the first and second 
quartiles of a are given by e2 and e, respectively. In the same approxima- 
tion the values of the first and second halves of cr differ from these values 
by 0.5% and 20% for n = 1 0  and m = 6 .  

In the next section we show the numerical calculations for the TSF in 
the Duffing equation using equivalent definitions to ~' and a". 

3. N U M E R I C A L  RESULTS 

We studied the period doubling cascade of the Duffing oscillator 
[Eq. (7)] for the parameter values a = 1, b = -10 ,  c = 100, and w = 3.76. 
The control parameter is the amplitude of the external driving force 7- We 
have used the Bulirsh-Stoer (s) method of numerical integration with 
double precision in the calculations that follow. 

We show in Fig. 2 the periodic orbit in the x y  space for the 23-cycle 
at the value of y where the orbit has its maximum stability. 

The calculation of the TSF for a one-cycle orbit in a flow can be done 
using the definition given by Eq. (8). As mentioned before, the TSF 
depends on the stability of the orbit. The method used to determine the 
stability of a periodic orbit in a flow is described in the Appendix. The TSF 
for the most stable orbit is shown in Fig. 3a for n = 8. This function is 
characterized by regions where the TSF is well behaved (flat) and represent 
the parts that converge with increasing n. There are narrow regions 
where ~) has an oscillatory behavior with the presence of spikes. In the 
well-behaved parts there is a very good agreement between the equivalent 
curve (Fig. la) of the quadratic map. It means that the Poincar6 sections 
of the Duffing equation for that section of the parameter space are well 
described by this map. We verified that in the flat regions the vectors 
Ix(t)  -- x(t + Tn_ 2)] and [x(t)  - x(t + Tn_ 1)] are almost collinear, and in 



1 2 5 2  de Sousa Vieira and G u n a r a t n e  

Fig .  2. 

0.7 - I I I 

0.45 - 

0.2 

Y 

- 0 . 0 5  

- 0 . 3  

- 0 . 5 5  - 

0 0.i 0.2 0 3 0.4 

x 

The most stable 23-cycle for the Ouffing oscillator in the x-y space for a= 1, 
b = -10, c = 100, and w = 3.76. 

the parts with spikes the angle ~b between these two vectors is large. 
Figure 3b depicts the function sin i ~b for the same orbit. 

We have also analyzed these oscillations in terms of stability. The 
stability of a periodic cycle can be characterized by its trace, as defined in 
the Appendix. We have plotted in Fig. 3c the trace of the orbit calculated 
after a 2~/co time interval. Although this calculation has not been done 
with the extrapolation At- - ,O (see the Appendix), this figure shows a 
qualitative picture of the stability of the orbit along the complete cycle. We 
observe that the regions with spikes, which correspond to large values of 
~b, are characterized by relative large fluctuations of the trace. Therefore, in 
these regions the stability of the orbit is very different from the global 
stability of the complete cycle. 

The last part of our work is the calculation of the TSF using an 
equivalent definition to Eq. (11). If we consider the expression 

( , ) rm)l 

for m < n, we obtain in a reasonable approximation the TSF for flows if it 
were calculated using a similar definition to Eq. (3). Figure 4 shows a~ 
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Fig. 4. 
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calculated for the most stable orbit of the 28-cycle. The agreement with the 
equivalent curve for maps is good. The presence of spikes is once more 
observed in the regions of big discontinuities of the TSF. 

4. C O N C L U S I O N S  

We have studied the scaling structure of the period doubling bifurca- 
tions in the Duffing equation. We calculated the trajectory scaling function 
for one cycle, instead of using two adjacent orbits, since this represents a 
hard numerical task. The agreement between the TSF for the Duffing equa- 
tion and the equivalent curve for the quadratic map is very good. The 
largest differences appear in the regions of the big jumps of the TSF. Such 
regions are characterized by very large fluctuations in the stability of 
the orbit, and by large values of the angle between the vectors 
[x(t)-x(t+T~ 2)] and [x(t)-x(t+T,,_~)] which are present in the 
definition of the TSF. To complete the work, we have used another defini- 
tion of the TSF for one cycle to find an approximation for the scaling 
structure if it were calculated using two adjacent orbits, 

A P P E N D I X  

To determine the stability of a periodic orbit in a flow we have used 
the following method. Consider a set of first-order differential equations 

2(t) = F(z(t)) (A.1) 

Define z~ = z(t) and zi+ ~= z(t + At). To first order in At 

z~+ 1 = z ~ +  F(z , )  At (A.2) 

The Jacobian matrix A (i~ of this map at the point z i is 1 +J(zi )At ,  
where J(zi) is the Jacobian matrix of F. For the Duffing equation (7), A (i~ 
is given by 

1 At 0 ) 
A(i)= - ( b +  3cx~)At 1 - a A t  -~/sin(Oi)At (A.3) 

0 0 1 

The product of the matrix A (~ calculated over the complete orbit gives 
a matrix A. We observe numerically that the elements of A have a linear 
correction in At, when they are not constants. In this way we can find by 
a linear extrapolation the values of these elements in the limit At ~ O. The 
eigenvalues of the extrapolated matrix provide the information about the 
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stability of the orbit. Observe that one of the eigenvalues is one; it means 
that  the corresponding eigenvector is tangent  to the orbit. The orbit  has the 
max imum stability when the real parts of the two other eigenvalues are 
zero, i.e., when the trace of the extrapolated matrix is one. We have used 
this method  to calculate the most  stable orbit  for a sequence of period 
doubl ing bifurcations in the Duffing equation. The ratio between the values 
of ~ of  these orbits converges in very good  agreement with the Feigenbaum 
constant  6. 
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